Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(24): 20457-20476, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35935292

RESUMEN

The development of sustainable, cost-efficient, and high-performance nanofluids is one of the current research topics within drilling applications. The inclusion of tailorable nanoparticles offers the possibility of formulating water-based fluids with enhanced properties, providing unprecedented opportunities in the energy, oil, gas, water, or infrastructure industries. In this work, the most recent and relevant findings related with the development of customizable nanofluids are discussed, focusing on those based on the incorporation of 2D (two-dimensional) nanoparticles and environmentally friendly precursors. The advantages and drawbacks of using 2D layered nanomaterials including but not limited to silicon nano-glass flakes, graphene, MoS2, disk-shaped Laponite nanoparticles, layered magnesium aluminum silicate nanoparticles, and nanolayered organo-montmorillonite are presented. The current formulation approaches are listed, as well as their physicochemical characterization: rheology, viscoelastic properties, and filtration properties (fluid losses). The most influential factors affecting the drilling fluid performance, such as the pH, temperature, ionic strength interaction, and pressure, are also debated. Finally, an overview about the simulation at the microscale of fluids flux in porous media is presented, aiming to illustrate the approaches that could be taken to supplement the experimental efforts to research the performance of drilling muds. The information discussed shows that the addition of 2D nanolayered structures to drilling fluids promotes a substantial improvement in the rheological, viscoelastic, and filtration properties, additionally contributing to cuttings removal, and wellbore stability and strengthening. This also offers a unique opportunity to modulate and improve the thermal and lubrication properties of the fluids, which is highly appealing during drilling operations.

2.
Phys Chem Chem Phys ; 23(40): 22923-22935, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617940

RESUMEN

The performance of fibrous membrane composites fabricated via electrospinning is strongly influenced by the solution's properties, process variables and ambient conditions, although a precise mechanism for controlling the properties of the resulting composite has remained elusive. In this work, we focus on the fabrication of electrospun poly(vinylpyrrolidone) (PVP) fibers, by varying both the polymer concentration and the mixture of ethanol (EtOH) and dimethylformamide (DMF) used as solvent. The impact of the solvent composition on the structural properties is assessed by a combined experimental and theoretical approach, employing scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheology, Fourier-transform infrared spectroscopy (FTIR) and stress-strain curves obtained from tensile tests to characterize the fibrous membranes produced, and density functional theory (DFT) calculations to explain the solvent's affect on PVP crystallization. We establish a morphological phase diagram, and propose a possible mechanism based on the measured fiber diameter distribution, the viscoelastic properties of the precursor solution, the correlation between the functional groups and the mechanical properties, the thermal transitions and the degree of crystallinity. We also employ DFT calculations to model the polymer coverage at equilibrium of a PVP polymer chain in the presence of EtOH/DMF solvent mixtures to corroborate the crucial role their O or -OH groups play in achieving high PVP coverages and promoting the stability of the resulting fiber. These findings will be valuable to researchers interested in predicting, modulating, and controlling both a fiber's morphology and its concomitant physico-chemical properties.

3.
Polymers (Basel) ; 13(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578985

RESUMEN

This work aims at bridging experimental and numerical approaches to determine the optimal operating parameters for the fabrication of well-shaped polyvinylpyrrolidone (PVP) particles via electrohydrodynamic atomization. Particular emphasis is given to the role of the PVP solution viscosity. Solutions of PVP at various concentrations dissolved in Dimethylformamide (DMF) were prepared and analyzed. Numerical simulation using a coupled electro-CFD model was used to determine the ranges of experimental flow rate and the voltage, ensuring that well-shaped spherical particles are produced. It was deduced that the optimal combination of the parameters (flow rate, voltage, and polymer concentration) can be well approximated by a scaling law. The established relationship allowed determination of a stability island that guarantees that the given polymer solution will form spherical particles. Analyzing morphology and sizes of the particles manufactured in the optimal parameters range, we show, among others, that the size of the PVP particles can be predicted as a function of the flow rate by a power scaling relationship.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...